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Abstract 

 

This paper compared the performance of two forecasting models (Seasonal ARIMA and 

Exponential smoothing) in an attempt to identify the model that fits properly in forecasting 

Nigerian stock exchange market. A two-staged approach to forecasting was carried out using 

monthly data for the period of 1985 to 2013. The models were assessed in similarly structured 

setting at the beginning, and then best models identified at this level were compared in a 

differently structured setting. The results show that Seasonal ARIMA (4,1,3)(3,1,2)12 and 

Holt-Winters multiplicative smoothing method are effective in forecasting Nigerian stock 

exchange market in a similarly structured setting. Nonetheless, when the two models were 

compared under different structures, the performance of Holt-Winters multiplicative 

smoothing method outperformed that of Seasonal ARIMA (4,1,3)(3,1,2)12. This suggests that 

Holt-Winters multiplicative smoothing method with Alpha (0.01), Delta (0.11) and Gamma 

(0.11) is more effective in forecasting Nigerian stock exchange market in the short run and it 

can be used to aid planning processes in the stock exchange market. Likewise, the seasonality 

pattern that characterizes stock exchange highlights the need to promote more of stock 

exchange market so as to lessen the negative impacts associated with it. The two models can 

be adequately used to forecast stock exchange data as the results have shown their potentiality 

in that regard. 

 

Keywords: Seasonal ARIMA, Exponential smoothing, Holt-winters, Forecasting model, stock 

Exchange 

 

1.0 Introduction 

The stock exchange sector is recognized as a growing exchange market which plays a 

significant role in trade, economic and social development. A large number of countries 

worldwide depend on this for their economic growth. Well-functioning stock exchange market 

enables economic growth and development by facilitating the mobilization of financial 

resources between business and institutions that needs capital to transform and grow.. 

mailto:alfams001@gmail.com


Lead City University Postgraduate Multidisciplinary Serial, (Series 3) 

______________________________________________________________________________________ 

114 
 

 

Several studies have proposed that ARIMA and Exponential Smoothing methods are better 

Forecasting models and have been used by many researchers than either econometric or other 

time-series models. A study conducted by Kulendran and Wong (2005) suggests that ARIMA 

provides more accurate forecasts for a time series that has fewer seasonal variations, whereas 

SARIMA provides more accurate forecasts for a time series that has a strong seasonal variation. 

Also, from the ARIMA scheme’s perception of forecasting the Nigerian stock market earnings, 

Ojo and Olatayo (2009) studied the estimation and performance of subset autoregressive 

integrated moving average (ARIMA) models. They estimated parameters for ARIMA and 

subset ARIMA processes using numerical iterative schemes shows the performance of the 

models and their residual variance were examined using AIC and BIC. The result of their study 

indicated that the SARIMA model outperformed the ARIMA model with smaller residual 

variance. On the other hand, Atis& Erer (2017) studied the NSE market returns series using 

monthly data of the All-Share-Index for the period January 1985 through December 2008. In 

his study, an ARIMA (1,1,1) model was selected as a tentative model for predicting index 

points and growth rates.  

 

The results revealed that the global meltdown destroyed the correlation structure existing 

between the NSE All-Share-Index and its past values. Agwuegbo et al. (2010) also studied the 

daily returns process of the Nigerian Stock Market using Discrete Time Markov Chains and 

martingales. Their study provided evidence that the daily stock returns process follows a 

random walk, but that the stock market itself is not efficient even in weak form. Several other 

studies that have used ARIMA schemes for analysis and forecasting of stock market prices/or 

returns in Africa include Simons and Laryea (2004), Rahman and Hossain (2006), and Al-

Shiab (2006) among others. These studies did not test whether or not the stock price/or returns 

processes are fractal in nature.  

 

The other popular and widely used forecasting model in time series analysis is exponential 

smoothing. Ostertagova and Ostertag (2012) argue that exponential smoothing is characterized 

by simplicity, computational efficiency, ease of adjusting its responsiveness to changes in the 

process of forecasting, and it is reasonable accuracy. Ravinda (2013) in his study on 

Forecasting with Exponential Smoothing argues that when there is no trend in the data, simple 

exponential smoothing will yield a minimum error when α value is small, in the range 0.0 – 

0.3. This is true to small series (n=12) as well as large (n=60) and when there is a linear trend 
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in the data, the performance of double exponential smoothing depending on the initial estimates 

of the level and trend components is good. Dimitrov (2008) explains also the primacy of 

exponential smoothing in forecasting, as the name suggests the weights attached to past time 

periods in forming the forecast decline exponentially. That is, the weights decrease rapidly at 

first and then less and less and so as the time period becomes older. The weight attached to a 

particular value approaches, but never quite reaches zero. This method generates accurate 

forecasts for many time series variables, recognizing the decreasing impact of past time periods 

as they faded further into the past. There are several types of exponential smoothing models 

which can be applied in forecasting depending on the nature of data in consideration for 

instance single exponential smoothing smoothed data by computing exponentially weighted 

averages and provides short-term forecasts. Double exponential smoothing provides short-term 

forecasts as previous methods. This procedure can work well when a trend is present, but it can 

also serve as a general smoothing method. This method is found using two dynamic estimates, 

α and β (with values between 0 and 1). Whereas winter’s Method smoothed data by Holt-

Winters exponential smoothing and provides short to medium range forecasting. This can be 

used when both trend and seasonality are present, with these two components being either 

additive or multiplicative. Winters' Method calculates dynamic estimates for three components; 

level, trend and seasonal denoted by α, β and γ (with values between 0 and 1) (Holt, 1957). 

However, the literature shows that there is no single model that consistently outperforms other 

models in all situations; therefore, this paper attempts to compare the two approaches in order 

to arrive to the best method that can be used in forecasting Nigerian stock exchange market. 

Khan and Alghulaiakh (2020) expressed the potential of ARIMA model in stock forecasting 

so as to produce an accurate prediction on stocks data which will help investors in their 

investments decisions. 

 

2.0    Statement of the Problem 

Forecasting of stock exchange in the stock market is a noticeable subject for many years now. 

The current econometric models has been enhanced depending on uses (Zotteri.,et al.,2005). 

The efficient and robust models are Auto Regressive Integrated Moving Average (ARIMA) 

models, which are used to forecast the financial time series data for short term than the other 

techniques such as Artificial Neural Networks, etc., (Yung joo et al.,2007, Merh et al.,2010, 

Sterba, 2010). Many researchers worked in ARIMA forecasting models to predict the future 

stock exchange (Khasel et al., 2009, Lee, Ho, 2011 and Khashei et al. 2012).  
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Consequently, since many studies have suggested that ARIMA and Exponential Smoothing 

methods are better forecasting models than either econometric or other time-series models, this 

study therefore attempts to compare ARIMA model and exponential smoothing model to know 

which one is a better forecasting model for the stock exchange market 

 

3.0 Research Questions 

This paper is driven by three research questions as stated below: 

i How ARIMA and exponential smoothing models enhance stock exchange forecasting? 

ii Can each of the forecasting model contribute to the improvement of stock exchange 

forecasting? 

iii What is the strength and role of the ARIMA and exponential smoothing in stock exchange 

market?  

 

4.0   Data and Methodology 

This paper uses monthly Nigerian stock exchange market data from January, 1985 to 

December, 2014.  It uses two important methods of time series forecasting which are seasonal 

ARIMA and Exponential smoothing models.  

 

4.1   Seasonal ARIMA 

ARIMA models depend on a statistical modeling theory known as the Box–Jenkins 

methodology. This methodology is concerned with iteratively building a model that accurately 

represents the past and future patterns of a time series (Louvieris, 2002). The ARIMA modeling 

approach expresses the current time series value as a linear function of past time series values 

(AR) and current lagged values of a white noise process (MA). The ARIMA model, which can 

be fitted to seasonal time series (quarterly or monthly observations), consists of seasonal and 

non-seasonal parts; the seasonal part of the model has its own autoregressive and moving 

average parameters with orders P and Q while the non-seasonal part has orders p and q 

(Kulendran and Wong, 2005). The AR, MA, or ARMA models are often viewed as stationary 

processes, that is, their means and covariances are stationary with respect to time. Since we are 

using monthly data with seasonal pattern we use ARIMA (p, d, q), (P, D, Q)s. 

Where 

( , , )p d q = Non-seasonal part of the model, ( , , )P D Q = Seasonal part of the model, ( )S = 

Number of periods per session 
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( )(1 )(1 ) ( ) ( )p s p q Q

t p t q QB B Y f B c e q B Q B         1.0 

Where 

(1 )rB = The regular difference of order r, (1 )sB = the exchange data, 
( )pb B

f = the regular 

autoregressive terms, 
( )pp B

F = the seasonal autoregressive terms, C = Constant term, t = the 

residuals (error term), 
( )qq B

q = the regular moving average terms and 
( )QQ B

Q = The seasonal 

moving average terms. 

Then, we create a catalog of autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) to determine whether or not seasonal difference is needed. The graph of the 

sample of autocorrelation function (ACF) and partial autocorrelation function (PACF) are 

drawn. The ACF measures the amount of linear dependence between observations in a time 

series that are separated by a lag q. The PACF helps to determine how many autoregressive 

terms in p are necessary (Chang, 2012). The general features of theoretical ACFs and PACFs 

are shown in table 1 

Table1: Features of ACF and PACF in seasonal ARIMA Model 

Model ACF PACF 

AR Spikes decay towards zero Spikes cutoff to zero 

MA Spikes cutoff to zero Spikes decay to zero 

ARMA Spikes decay to zero Spikes decay to zero 

Source: Pankratz (1983) 

Seasonal ARIMA model requires diagnostic checking (or model validation); before can be used 

for forecasting application. This is done by checking for normality of the residuals. The check 

of model adequacy is provided by the Ljung- Box Q statistic. The test statistic Q is given by 

2
1

1

( 2)
p

k

pk
Q T T

T k

 
   

 


        2.0

 

Where pk is the sample autocorrelation at lag k 

 

4.2 Exponential Smoothing 

While in seasonal ARIMA the past observations are weighted equally, on the other hand, 

exponential smoothing produces a smoothed time series. Exponential Smoothing assigns 

exponentially decreasing weights as the observation get older where as there are one or more 
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smoothing parameters to be determined (or estimated) and these choices determine the weights 

assigned to the observations (Dimitrov, 2008). With regard to exponential smoothing, this 

paper uses two exponential smoothing techniques which are Holt-Winters additive and Holt-

Winters multiplicative exponential smoothing to determine the appropriate forecasting model. 

Holt (1957 and winters (1960) extended Holt’s method to capture seasonality. The holt-winters 

seasonal method comprises the forecast equation and three smoothing equations, one for the 

level, one for trend and the other for the seasonal component. There are two variations to this 

method that differ in the nature of the seasonal component. The additive method is preferred 

when the seasonal variations are roughly constant through the series while the multiplicative 

method is preferred when the seasonal variations are changing proportional to the level of the 

series. With additive method, the seasonal component is expressed in absolute terms in the 

scale of the of the observed series and in the level of equation, the series is seasonally adjusted 

by subtracting the seasonal component. With multiplicative method, the seasonal component 

will add up to approximately zero. The seasonal component is expressed in relative terms 

(percentage) and the series is seasonally adjusted by dividing through by the seasonal 

component. According to Hyndman and Athanasopoulos (2013), both multiplicative and 

additive models give the same point forecasts with varying prediction intervals. Here we report 

the most favorable results for ETS by evaluating between point forecasts and prediction 

intervals. 

 

4.2.1 Holt-Winters Additive Method 

The Holt-Winters methods include estimates of the seasonal factors for periods (denoted by S). 

The parameters p, states the number of seasonal periods in a year. For example, p = 12 would 

correspond to monthly seasonal adjustments and p = 4 would correspond to quarterly seasonal 

adjustments. In the additive version, the forecast for period t+n (n periods after the current 

period) is given by 

    1 11t t t p t tE A S E T              3.0 

   1 11t t t tT E E T              4.0 

   1t t t t pS A E S              5.0 

t n t t t n pF E nT S             6.0 

 and   smooth the base and the trend while the parameter  0 1   is used to smooth the 

trend. 
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4.2.2 Holt-Winters Multiplicative method 

The multiplicative version of the Holt-Winters method uses seasonal factors as multipliers 

rather than additive constants. The forecast for period t n is given by 

  1
1 11t t t

t p

A
E E T

S
   



           7.0 

   1 11t t t tT E E T              8.0 

 t n t t t n pF E nT S             9.0 

 

4.2.3 Comparative Analysis between Seasonal ARIMA and Exponential Smoothing 

Models 

When making comparison between Seasonal ARIMA and Exponential smoothing methods, 

forecasting was carried out for a period of 6 months. We use Mean Absolute Percentage Error 

(MAPE), Root Mean Squared Error (RMSE), the Bayesian Information Criterion (BIC), and 

Mean Absolute Deviation (MAE) to determine the most effective model in forecasting tourist 

arrivals. While MAPE is useful for purposes of reporting, it expresses accuracy as a percentage 

of the error, RMSE’s value is minimized during the parameter estimation process, and it is the 

statistic that determines the width of the confidence interval for prediction. On the other hand, 

MAE gives the relative measure of error that is applicable to time series data, it expresses 

accuracy in the same unit as the data, which becomes easier to conceptualize the amount of 

error and BIC is preferred by statisticians because it has the feature that if there is a true 

underlying model, then with enough data BIC will select that model. We use the following 

measures of accuracy to identify the best model. 

100 t

t

e
MAPE

n A
 

         10.0 

     

 

2

1

1 n

t

i

RMSE e
n 

           11.0 

1

1 n

t t

i

MAE A F
n 

           12.0

 

   2ln lnBIC L N k           13.0 

Where 
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te is the forecast error which is calculated by subtracting the forecast value from the actual 

value in the series. tA and tF  represent actual and forecast values respectively. L is the value of 

the likelihood function evaluated at the parameter estimates while N and k denote the number 

of observations and the number of estimated parameters respectively. Minimum values of these 

accuracy measures provide the best results in the models. 

 

5.0 Results and discussion of findings 

Figure 1 below presents the time series plot of stock exchange from January, 1985 to 

December, 2013. According to Song and Li (2010), seasonality is a notable characteristic of a 

data request and cannot be ignored in the modeling process when monthly or quarterly data are 

used. In determining whether stock exchange data reveals some seasonality features or not, we 

use time series plot, descriptive statistics and seasonal factors to examine the pattern of data. 

 

Figure1 showing the time series plot of the stock exchange data 

 

5.1    ARIMA Models 

The Box-Jenkins methodology was used in the choice of the appropriate Seasonal ARIMA 

model. The first stage of the Seasonal ARIMA model building is to identify whether the 

variable which is being forecasted is stationary in time series or not. By stationary we mean, 

the values of variables over time varies around a constant mean and variance. The time plot of 

the stock exchange data in figure1 above clearly shows that the data is not stationary. We then 

further, examine the Auto correlation Function (ACF) and Partial Autocorrelation Function 

(PACF). 

Monthly Time seriesime Series Data From January 1985 to December 2013

Stock Exchange 
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Figure2: Ljung-Box p-value 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) can provide 

valuable insights into the behaviour of time series data. They are frequently used to decide the 

number of Autoregressive (AR) and Moving Average (MA) lags for the ARIMA models. Also, 

they can help identify any seasonality within the data. Accurate application and interpretation 

are vital in extracting useful information from the ACF and PACF plots. 

The ACF and PACF plots can be obtained from the original data, as well as from the residuals 

of a model. On the original data, these plots can aid in detecting any autoregressive or moving 

average terms that may be significant in the time series. When applied to the residuals, these 

plots can detect any remaining autocorrelation in the model. This also provides insight into 

whether additional AR or MA terms need to be included in the model. Similarly, they can 

detect any seasonal behaviour that must be accounted for in the model. 

Plots for Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

ACF and PACF for Stock exchange 

 

Figure3: ACF and PACF for the stock exchange data 

The plots for ACF and PACF showed the presence of spikes outside the minor regions. ACF 

shows higher spikes at lag1, lag11 and lag 12 while PACF indicates spikes at lag1, lag11 and 
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lag12. This suggests the seasonal structure of the data is non-stationary. Therefore, the 

differencing of the data was carried out in order to make the data stationary. 

Table2: The Results of MAPE, RMSE, BIC and values of fitted Seasonal ARIMA 

ARIMA  Models   MAPE   RMSE   BIC   MAE 

ARIMA (3,1,3) (3,1,4)  12.696  8541.112  17.814  6457.105 

ARIMA (4,1,3) (3,1,2)  10.037  7138.342  17.017  5562.083 

ARIMA (3,1,4) (4,1,2)  11.293  7555.440 17.729 5833.758 

ARIMA (3,1,1) (3,1,5)  12.682 9545.769 17.850 6393.924 

ARIMA (4,1,2) (4,1,4)  11.434  8738.117 17.748 6027.764 

ARIMA (2,1,4) (2,1,4)  11.244 8426.463 17.519 5794.019 

ARIMA (3,1,3) (2,1,1)  11.726 7347.621 17.587 5943.829 

ARIMA (3,1,4) (2,1,4)  11.872 7415.091 17.553 6169.576 

ARIMA (2,1,3) (2,1,2)  11.649 8339.253 17.592 6231.654 

 

Table2 above shows the performance of Seasonal ARIMA, several seasonal models were 

identified. It was observed that out four measures of accuracy, the performance of 

ARIMA(4,1,3)(3,1,2)12 was comparatively better in three measures of accuracy which are 

MAPE (10.037), RMSE (7138.342) and MAE (5562.083) when compared with other ARIMA 

models. 

The Ljung-Box (Q) statistics were computed for checking residuals in seasonal lags of 1, 11, 

and 12. The Ljung-Box Q statistics is a diagnostic measure of white noise for a time series, 

assessing whether there are patterns in a group of autocorrelations under the hypotheses with 

(kp-q-P-Q) degree of freedom (Çuhadar, 2014). 

 

5.2   Exponential Smoothing Models 

In examining exponential smoothing models we use the Sum of the Squared Error (SSE) and 

the Mean Squared Error (MSE). The minimum values of SSE and MSE are preferred. The 

parameters of Alpha (α), Gamma (β) and Delta (γ) which minimizes the values of SSE and 

MSE were identified through an iteration process. 
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Table3: Experimental Smoothing Parameters 

Model   

(level) 

  

(Growth) 

  (Seasonal) SSE MSE 

Holt-Winter’s 

Multiplicative model 

0.01 0.11 0.11 3.476E+09 3.218E+07 

Holt-Winter’s Additive 

model 

0.10 0.12 0.11 3.537E+09 3.275E+07 

 

Table3 above shows that Holt-Winter’s Multiplicative exponential smoothing recorded 

relatively lower SSE and MSE values, this suggests that Holt-Winter’s Multiplicative 

exponential smoothing is appropriate for forecasting stock exchange in similar structure model 

setting (exponential smoothing models). However, to identify the best model, the performance 

of Holt-Winter’s Multiplicative was compared with that of ARIMA(4,1,3)(3,1,2)12 using the 

results of MAPE, RMSE, BIC and MAE. 

Table4: Comparative Analysis of Seasonal ARIMA (4,1,4)(3,1,4)12 and Holt-Winter’s 

Multiplicative Exponential Smoothing 

Model MAPE RMSE BIC MAE 

Holt-Winter’s Multiplicative model 8.0 3874.573 -50 4629.430 

ARIMA(4,1,3) (3,1,2) 10.049 7149.542 17.807 5562.083 

 

In comparative analysis between Seasonal ARIMA and exponential smoothing models, the 

results in table4 indicate that Holt-Winter’s Multiplicative exponential smoothing model 

recorded relatively lower values in terms of MAPE (8.0), RMSE (3874.573), BIC(-50) and 

MAE (4629.43). This shows that Holt-Winter’s Multiplicative has outperformed other 

Seasonal ARIMA models. Based on these results, we can conclude that Holt-Winter’s 

Multiplicative model is the best model for forecasting tourist arrivals in the short run. 

 

6.0    Discussion and Conclusion 

The objective of this paper was to compare the appropriateness of two models in forecasting 

the stock exchange. In order to capture the seasonality pattern of the data, the performance of 
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Seasonal ARIMA, Holt-Winters Additive and Holt-Winters multiplicative exponential 

smoothing were examined. The findings show that Holt–Winters’ multiplicative exponential 

smoothing model with alpha (0.01), Delta (0.11) and Gamma (0.11) is the more accurate model 

for forecasting stock exchange when a comparative analysis was carried out using measures of 

accuracy such as MAPE, RMSE, BIC and MAE. This finding suggests that the seasonal 

variations of the stock exchange data are changing in proportional to the level of the series. 

This result corroborates with the study of Nisantha and Lelwala who concluded that Holt–

Winter’s Exponential Smoothing model with multiplicative seasonality is more accurate. 

Similarly, studies of Lim and McAleer (2002) and Cho (2003) have confirmed the superiority 

of exponential smoothing methods in time series forecasting. However, Cuhadar (2014), 

reported that forecasts by the seasonal exponential smoothing models have provided quite good 

results among other applied models in forecasting different techniques involving exponential 

smoothing and univariate ARIMA 
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